Abstract
This study presents an innovative, intelligent obstacle avoidance module intended to significantly enhance the collision prevention capabilities of the robotic arm mechanism onboard a high-speed rail tunnel lining inspection train. The proposed module employs a fusion of ORB-SLAM3 and Normal Distribution Transform (NDT) point cloud registration techniques to achieve real-time point cloud densification, ensuring reliable detection of small-volume targets. By leveraging spatial filtering, cluster computation, and feature extraction, precise obstacle localization information is further obtained. A fusion of multi-modal data is achieved by jointly calibrating 3D LiDAR and camera images. Upon validation through field testing, it is demonstrated that the module can effectively detect obstacles with a minimum diameter of 0.5 cm, with an average deviation controlled within a 1–2 cm range and a safety margin of 3 cm, effectively preventing collisions. Compared to traditional obstacle avoidance sensors, this module provides information across more dimensions, offering robust support for the construction of powerful automated tunnel inspection control systems and digital twin lifecycle analysis techniques for railway tunnels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.