Abstract
With the development of artificial intelligence, machine learning has been applied in more and more domains. In order to improve the quality and efficiency of software, automatic program generation is becoming a research hotspot. In recent years, machine learning has also been gradually applied in automatic program generation. Decision trees, language models, and cyclic neural networks have been applied in code generation, code completion and code knowledge mining. The efficiency of software development has been improved to a certain extent using machine learning. Aimed at the automatic program generation, this paper analyzes and summarizes the models of machine learning, the modifications involved in the models and the application effects. The research direction is discussed from the aspects of programmer behavior and automatic program generation of machine learning.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.