Abstract

Polymer film capacitors have been widely applied in many pulsed power fields owing to their fastest energy-released rates. The development of ferroelectric polyvinylidene fluoride (PVDF)-based composites has become one of the hot research directions in the field of high-energy storage capacitors. Recently, hierarchically-structured all-organic composites have been shown to possess excellent comprehensive energy storage performance and great potential for application. In this review, most research advances of hierarchically-structured all-organic composites for the energy storage application are systematically classified and summarized. The regulating strategies of hierarchically structured all-organic composites are highlighted from the perspective of preparation approaches, tailored material choices, layer thicknesses, and interfaces. Systematic comparisons of energy storage abilities are presented, including electric displacement, breakdown strength, energy storage density, and efficiency. Finally, we present the remaining problems of hierarchically structured all-organic composites and provide an outlook for future energy storage applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.