Abstract
Cranial irradiation remains a frontline treatment for the control of tumor growth, and individuals surviving such treatments often manifest various degrees of cognitive dysfunction. Radiation-induced depletion of stem/precursor cell pools in the brain, particularly those residing in the neurogenic region of the hippocampus, is believed, in part, to be responsible for these often-unavoidable cognitive deficits. To explore the possibility of ameliorating radiation-induced cognitive impairment, athymic nude rats subjected to head only irradiation (10 Gy) were transplanted 2 days afterward with human embryonic stem cells (hESC) into the hippocampal formation and analyzed for stem cell survival, differentiation, and cognitive function. Animals receiving hESC transplantation exhibited superior performance on a hippocampal-dependent cognitive task 4 months postirradiation, compared to their irradiated surgical counterparts that did not receive hESCs. Significant stem cell survival was found at 1 and 4 months postirradiation, and transplanted cells showed robust migration to the subgranular zone throughout the dentate gyrus, exhibiting signs of neuron morphology within this neurogenic niche. These results demonstrate the capability to ameliorate radiation-induced normal tissue injury using hESCs, and suggest that such strategies may provide useful interventions for reducing the adverse effects of irradiation on cognition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.