Abstract

Protein-ligand interaction plays a crucial role in drug discovery, facilitating efficient drug development and enabling drug repurposing. Several computational algorithms, such as Graph Neural Networks and Convolutional Neural Networks, have been proposed to predict the binding affinity using the three-dimensional structure of ligands and proteins. However, there are limitations due to the need for experimental characterization of the three-dimensional structure of protein sequences, which is still lacking for some proteins. Moreover, these models often suffer from unnecessary complexity, resulting in extraneous computations. This study presents ResBiGAAT, a novel deep learning model that combines a deep Residual Bidirectional Gated Recurrent Unit with two-sided self-attention mechanisms. ResBiGAAT leverages protein and ligand sequence-level features and their physicochemical properties to efficiently predict protein-ligand binding affinity. Through rigorous evaluation using 5-fold cross-validation, we demonstrate the performance of our proposed approach. The model exhibits competitive performance on an external dataset, highlighting its generalizability. Our publicly available web interface, located at resbigaat.streamlit.app, allows users to conveniently input protein and ligand sequences to estimate binding affinity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.