Abstract
Best linear unbiased prediction is well known for its wide range of applications including small area estimation. While the theory is well established for mixed linear models and under normality of the error and mixing distributions, the literature is sparse for nonlinear mixed models under nonnormality of the error distribution or of the mixing distributions. We develop a resampling-based unified approach for predicting mixed effects under a generalized mixed model set-up. Second-order-accurate nonnegative estimators of mean squared prediction errors are also developed. Given the parametric model, the proposed methodology automatically produces estimators of the small area parameters and their mean squared prediction errors, without requiring explicit analytical expressions for the mean squared prediction errors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.