Abstract

Momilactones from rice have allelopathic activity, the ability to inhibit growth of competing plants. Transferring momilactone production to other crops is a potential approach to combat weeds, yet a complete biosynthetic pathway remains elusive. Here, we address this challenge through rapid gene screening in N. benthamiana, a heterologous plant host. To do so, we solved a central problem with this technique: diminishing yields remain a bottleneck for multi-step pathways. We increased intermediate and product titers by re-routing diterpene biosynthesis from the chloroplast to the cytosolic, high-flux mevalonate pathway. This enabled the discovery and reconstitution of a complete route to momilactones (>10-fold yield improvement versus rice). Pure momilactone B isolated from N. benthamiana inhibits germination and root growth in Arabidopsis, validating allelopathic activity. We demonstrate the broad utility of this approach by applying it to forskolin, a hedgehog inhibitor, and taxadiene, an intermediate in taxol biosynthesis (~10-fold improvement versus chloroplast expression).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.