Abstract

Chemotherapy is one of the most basic and important treatments for malignant tumors. However, most chemotherapeutic drugs suffer from the resistance of tumor cells and lead to chemotherapy failure. Multidrug resistance (MDR) of tumor cells is the main obstacle to chemotherapy failure. The generation of MDR is not only the result of the performance of tumor cells, but the tumor microenvironment (TEM) also plays an important role in this process. The simultaneous dual intervention of cancer cells and the TEM has the potential to provide surprising results in overcoming MDR tumor therapy. Therefore, in this study, we designed a folate acid ligand-modified nanoparticle (FA-NPs) with a size of about 145nm targeting multidrug-resistant colorectal cancer and successfully co-loaded cisplatin and Tris(2-chloroisopropyl) phosphate (TCPP). FA-NPs can enrich tumor sites through receptor-mediated endocytosis. In vitro mechanism studies have shown that nanoparticles can reverse cisplatin resistance mainly by further increasing the level of reactive oxygen species in tumor cells, breaking the homeostasis of the internal environment, then trigging mitochondrial stress, regulating drug resistance-related pathways, and improving the tumor drug resistance microenvironment; finally, the cisplatin recovers the antitumor effect with assistance from TCPP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.