Abstract

We theoretically investigate the influence of chiral Casimir-Polder (CP) forces in Talbot-Lau interferometry, based on three nanomechanical gratings. We study scenarios where the second grating is either directly written into a chiral material or where the nanomask is coated with chiral substances. We show requirements for probing enantiospecific effects in matter-wave interferometry in the transmission signal and the interference fringe visibility, which depend on the de Broglie wavelength and the molecular chirality. The proposed setup is particularly sensitive to CP forces in the nonretarded regime where chiral effects can be comparable in magnitude to their electric and magnetic counterparts. While the first and third gratings do not change the phase of the matter wave, applying a coating of chiral substances to them enhances the instrument's chiral selectivity. Published by the American Physical Society 2024

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call