Abstract

BackgroundGamete and embryo development are crucial for successful reproduction and seed set in plants, which is often the determining factor for crop yield. Proline accumulation was largely viewed as a specific reaction to overcome stress conditions, while recent studies suggested important functions of proline metabolism also in reproductive development. Both the level of free proline and proline metabolism were proposed to influence the transition to flowering, as well as pollen and embryo development.ResultsIn this study, we performed a detailed analysis of the contribution of individual proline biosynthetic enzymes to vegetative development and reproductive success in Arabidopsis. In contrast to previous reports, we found that pyrroline-5-carboxylate (P5C) synthetase 2 (P5CS2) is not essential for sexual reproduction although p5cs2 mutant plants were retarded in vegetative development and displayed reduced fertility under long-day conditions. Single mutant plants devoid of P5CS1 did not show any developmental defects. Simultaneous absence of both P5CS isoforms resulted in pollen sterility, while fertile egg cells could still be produced. Expression of P5C reductase (P5CR) was indispensable for embryo development but surprisingly not needed for pollen or egg cell fertility. The latter observation could be explained by an extreme stability of P5CR activity, which had a half-life time of greater than 3 weeks in vitro. Expression of P5CR-GFP under the control of the endogenous P5CR promoter was able to restore growth of homozygous p5cr mutant embryos. The analysis of P5CR-GFP-fluorescence in planta supported an exclusively cytoplasmatic localisation of P5CR.ConclusionsOur results demonstrate that potential alternative pathways for proline synthesis or inter-generation transfer of proline are not sufficient to overcome a defect in proline biosynthesis from glutamate during pollen development. Proline biosynthesis through P5CS2 and P5CR is limiting for vegetative and reproductive development in Arabidopsis, whereas disruption of P5CS1 alone does not affect development of non-stressed plants.

Highlights

  • Gamete and embryo development are crucial for successful reproduction and seed set in plants, which is often the determining factor for crop yield

  • We observed that application of mild salt stress to heterozygous p5cs2-1 mutant plants allowed the formation of approximately 1% homozygous and fertile seeds in vivo

  • With the careful physiological and genetic characterization of insertion mutants in the genes P5CS1, P5CS2 and P5C reductase (P5CR) we demonstrated that both P5CS and P5CR enzyme activities are essential for successful sexual reproduction in Arabidopsis

Read more

Summary

Introduction

Gamete and embryo development are crucial for successful reproduction and seed set in plants, which is often the determining factor for crop yield. Proline accumulation was largely viewed as a specific reaction to overcome stress conditions, while recent studies suggested important functions of proline metabolism in reproductive development. Both the level of free proline and proline metabolism were proposed to influence the transition to flowering, as well as pollen and embryo development. Changes in free proline content occur during the development of plants growing under non-stress conditions, especially in reproductive organs. In Arabidopsis, as well as in many other plant species, two P5CS isoforms have been identified with different expression patterns and specific functions in primary metabolism and stress defence [5,6,7]. A P5CS1-GFP fusion protein formed cytosolic speckles in embryonic cells, whereas in leaf mesophyll cells of osmotically stressed plants P5CS1-GFP fluorescence was mostly confined in chloroplasts [10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call