Abstract

Proline biosynthesis and accumulation is a common response to unfavorable environment in many plants. This work aimed to elucidate the effects of boron (B)-deficiency and toxicity on proline metabolism and biosynthesis in Brassica napus in a hydroponic experiment. The results showed that B-deficiency and toxicity exert injurious impact on plant growth, accumulated high malondialdehyde (MDA) content, and caused the destruction of subcellular structure. Proline accumulated in both B deprivation and B toxicity plants, except B toxicity-treated root. In roots, B-deficiency increased ornithine content and pyrroline-5-carboxylate reductase (P5CR) activity, with the higher expression of BnaC03.P5CR, whilst decreased glutamate, glutamate-1-semialdehyde (GSA), pyrroline-5-carboxylate (P5C) contents and ornithine-δ-aminotransferase (δ-OAT), pyrroline-5-carboxylate synthetase (P5CS), proline dehydrogenase (ProDH) activities in terms of down-regulated the BnaC04.P5CS2, BnaA04.P5CS2, and BnaAnn.ProDH expression. The glutamate and GSA contents were decreased while P5C, arginine, and ornithine contents were enhanced in leaves under B-deficient and toxicity conditions. Lower glutamate pathway-related substance contents, P5CR, and δ-OAT activities while higher ProDH activity along with the same trend of related-gene expression were observed in B-toxicity-treated roots. Importantly, principal component analysis (PCA) in conjunction with correlation analysis indicated that ornithine pathway-related substances and enzymes contributed more to proline accumulation in B-deficient plant and B toxicity-treated leaves. Collectively, proline accumulation is caused by increased synthesis and decreased decomposition, and positively contributed, at least partly, by regulated ornithine pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call