Abstract

Inositol phospholipid turnover is enhanced during mitogenic stimulation of cells by growth factors and the breakdown of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) may be important in triggering cell proliferation. PtdInsP2 also binds actin-binding proteins to regulate their activity, but it is not yet understood how this control is achieved. The protein alpha-actinin from striated muscle contains large amounts of endogenous PtdInsP2, whereas that from smooth muscle has only a little but will bind exogenously added PtdInsP2. In vitro alpha-actinin binds to F-actin and will crosslink actin filaments, increasing the viscosity of F-actin solutions. We report here that alpha-actinin from striated muscle is an endogenous PtdInsP2-bound protein and that the specific interaction between alpha-actinin and PtdInsP2 regulates the F-actin-gelating activity of alpha-actinin. Although the F-actin-gelating activity of alpha-actinin from smooth muscle is much reduced compared with that from striated muscle, exogenous PtdInsP2 can enhance the activity of smooth muscle alpha-actinin to the level seen in striated muscles. These results show that PtdInsP2 is present in striated muscle alpha-actinin and that it is necessary for alpha-actinin to realize its maximum gelating activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.