Abstract

Phosphatidylinositol (PI) breakdown represents a powerful system participating in the transduction mechanism of some neurotransmitters and growth factors and producing two second messengers, diacylglycerol and inositol trisphosphate. The transformation of PC12 neuroblastoma cells into neuron-like cells induced by nerve growth factor (NGF) is preceded by a rapid stimulation of PI breakdown; however, it was not known whether PI breakdown mediates actions of other members of the neurotrophin family. The present study analyzed the effects of NGF, brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) on PI breakdown in primary cultures of embryonic rat brain cells. Cultures were grown for 7 days; PI was then labeled by incubating cultures with myo-[3H]inositol, which then were exposed acutely to growth factors. BDNF and NT-3, but not NGF, elevated the levels of labeled inositol phosphates within 10-15 min after addition to the cultures in a dose-dependent manner. ED50 values for BDNF and NT-3 were 12.4 and 64.5 ng/ml, respectively. Comparable effects were found in cultures of cortical, striatal, and septal cells. The actions of BDNF and NT-3 probably reflect actions on neurons, because no effects were seen in cultures of nonneuronal cells. In contrast, basic fibroblast growth factor induced a marked stimulation of PI breakdown in cultures of nonneuronal cells. K252b, which selectively blocks neurotrophin actions by inhibiting trk-type receptor proteins, prevented the PI breakdown mediated by BDNF and NT-3. The findings suggest that rapid and specific induction of PI breakdown is involved in the signal transduction of BDNF and NT-3, and they provide evidence that cortical neurons are functionally responsive to BDNF and NT-3 during development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.