Abstract

In the assessment of wave-in-deck loads for new and existing maritime structures typically model tests are carried out. To determine the most critical conditions and measure sufficient impact loads, a range of sea states and various seeds (realisations) for each sea state are tested. Based on these measurements, probability distributions can be derived and design loads determined. In air gap model testing usually only few, if any, impact loads occur per 3-hour seed. This can make it challenging to derive reliable probability distributions of the measured loads, especially when only a few seeds are generated. In addition wave impact forces, such as greenwater loading, slamming, or air gap impacts are typically strongly non-linear, resulting in a large variability of the measured loads. This results in the following questions: How many impacts are needed to derive a reliable distribution? How is the repeatability of individual events affecting the overall distribution? To answer these questions wave-in-deck model tests were carried out in 100 x 3-hour realisations of a 10,000 year North Sea sea state. The resulting probability distributions of the undisturbed wave measurements as well as the measured wave-in-deck loads are presented in this paper with focus on deriving the number of seeds and exposure durations required for a reliable estimate of design loads.The presented study is Part 2 of a combined study on guidance for the convergence and variability of wave crests and impact loading extreme values. The data set of Part 1 ([1]) is based on greenwater loads on a sailing ferry and the data set of Part 2 on wave-in-deck loads on a stationary deck box.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.