Abstract

For the design of offshore structures in harsh wave environments, model testing continues to be the recommended industry practice for determining wave impact forces on offshore structures. Accurate measurements of wave impacts in model tests have been a challenge for several decades. Transducers are required to accurately capture the short duration, high magnitude, and dynamic nature of impact loads. The structural model, transducers, and the transducer mountings need to be designed such that mechanical vibrations in the integrated transducer-mounting-structural model system do not contaminate the wave impact measurements. In this work, the dynamic oscillations in the measurements were controlled through the design and fabrication of transducers, their mounting and the GBS model. Wave crest probability distributions were developed that included fully nonlinear effects. These distributions were used as a benchmark to qualify the waves in the wave calibration tests. The highly stochastic nature of impact loads makes it challenging to obtain converged probability distributions of the maximum impact loads (i.e. forces or pressures) from model tests. To increase the confidence in the statistical values of wave impact loads, a large number of realizations were used for a given sea state. Variability of the maximum pressure due to wave basin effects (such as wait-time between tests) was examined with fifteen repeat tests using the same wave maker control signal. These tests provided insights into the random behavior of the impact loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.