Abstract
Methyl groups are abundant in anoxic environments and their utilization as carbon and energy sources by microorganisms involves oxidation of the methyl groups to CO2, followed by transfer of the electrons to an acceptor. In acetogenic bacteria, the electron acceptor is CO2 that is reduced to enzyme bound carbon monoxide, the precursor of the carboxyl group in acetate. Here, we describe the generation of a mutant of the acetogen Acetobacterium woodii in which the last step in methyl group oxidation, formate oxidation to CO2 catalyzed by the HDCR enzyme, has been genetically deleted. The mutant grew on glycine betaine as methyl group donor, and in contrast to the wild type, formed formate alongside acetate, in a 1:2 ratio, demonstrating that methyl group oxidation stopped at the level of formate and reduced electron carriers were reoxidized by CO2 reduction to acetate. In the presence of the alternative electron acceptor caffeate, CO2 was no longer reduced to acetate, formate was the only product and all the carbon went to formate. Apparently, acetogenesis was not required to sustain formatogenic growth. This is the first demonstration of a genetic reprogramming of an acetogen into a formatogen that grows by homoformatogenesis from methyl groups. Formate production from methyl groups is not only of biotechnological interest but also for the mechanism of electron transfer in syntrophic interactions in anoxic environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.