Abstract

Exposure of rams to alternating 16-week cycles of long and short days (16L:8D and 8L:16D) results in periods of testicular regression followed by testicular redevelopment, and there is an inverse relationship between the blood levels of prolactin and testis activity. In this study, two groups of rams were held under long or short day lengths for a period of 94 weeks. When held under either long or short days for more than 16 weeks, the animals showed spontaneous changes in gonadal activity and in the secretion of prolactin, both of which were no longer correlated with the prevailing photoperiod, i.e., they became photorefractory. The photorefractoriness was characterized by cyclical changes in testis function which were independent of day length. The period of these spontaneous cycles was similar during both treatment regimens (long days: 40.9 +/- 1.5 weeks; short days: 38.1 +/- 0.33 weeks), suggesting the presence of an endogenous pacemaker for the reproductive system. The changes in blood prolactin levels during photorefractoriness were no longer correlated with testis activity, and though cyclical, the period lengths differed under the two regimens (long days: 31.8 +/- 1.4 weeks; short days: 48.6 +/- 0.3 weeks). The rates of change in testis function and prolactin secretion were slower during the refractory state than during the photosensitive state. Upon switching the rams to a different photoperiod after the 94 weeks of exposure to fixed day lengths, the rams showed relatively rapid testicular and prolactin responses. Photoperiodic information appears to be relayed to the endocrine system through the daily pattern of melatonin secretion by the pineal. We measured the daily blood levels of melatonin on several occasions during phases of photosensitivity and photorefractoriness in the same group of rams. During the first 21 weeks under both lighting treatments, the rams showed synchronized daily patterns in their blood levels of melatonin, with elevated levels occurring mainly during the daily period of darkness. Similar synchronized daily rhythms were also seen when the rams were switched to a different photoperiod following 94 weeks of exposure to either long or short days. Between Weeks 21 and 94, the daily rhythms of melatonin did not occur consistently in all rams; often, the patterns differed markedly between individual rams held under the same day length and peak levels of melatonin were not always confined to periods of darkness.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.