Abstract

To determine whether the photoperiodic responses of reproductive and prolactin (PRL) rhythms in the ewe requires an intact suprachiasmatic nucleus (SCN) driving the pineal rhythm of melatonin secretion, four groups of ovary-intact ewes over a 6-year period were subjected to bilateral (n = 40) or sham lesions (n = 15) of the SCN. Animals were exposed to an alternating 90-120 day photoregimen of 9L:15D and 16L:8D photoperiods. Blood samples taken twice weekly were assayed for prolactin and for progesterone to monitor oestrous cycles. On several occasions blood samples also were taken at hourly intervals for 24 h and analyzed for melatonin. Melatonin concentrations in sham lesioned ewes were basal during the lights-on period and rose robustly during darkness. Those sheep bearing unilateral lesions of the SCN (n = 13) or where the lesion spared the SCN entirely (n = 8) had patterns of melatonin secretion similar to sham ewes. The remaining ewes, having complete (n = 9) or incomplete bilateral (n = 8) destruction of the SCN, with one exception, had disrupted patterns of melatonin secretion. The nature of this disruption varied from complete suppression to continuously elevated levels. In lesioned ewes where melatonin secretion was not affected the onset and cessation of ovarian cycles were similar to sham ewes; stimulation of oestrous cycles under 9L:15D and cessation of oestrous cycles under 16L:8D. In contrast, 13 of 17 ewes with disrupted melatonin secretion also exhibited disrupted patterns of ovarian activity. In these animals oestrous cycles were no longer entrained by photoperiod but still occurred in distinct clusters, that is, groups of cycles began and ended spontaneously. Sheep with normal melatonin patterns showed low levels of PRL secretion during short days and elevated PRL levels during long days. However, 8 of 13 ewes with disrupted melatonin showed patterns of PRL secretion that were no longer entrained by photoperiod. A minority of ewes with disrupted melatonin patterns still showed reproductive (n = 4) and PRL (n = 5) responses similar to those of sham-lesioned ewes. These results show that bilateral destruction of the SCN in the ewe disrupts the circadian pattern of melatonin secretion and that this disruption usually, but not always, is associated with altered photoperiodic responses. These results strongly suggest that the SCN are important neural elements within the photoperiod time-keeping system in this species. A role for the SCN in the generation of endogenous transitions in reproductive activity (refractoriness) and prolactin secretion is not supported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.