Abstract

Twenty-four-hour patterns of serum melatonin and prolactin levels were determined in ewes on nine occasions during a year. The sheep were maintained in four different photoperiods: room 1, simulated natural photoperiod; room 2, normal daylength extremes twice in 12 months, changes occurring in a regular fashion; room 3, alternating long (16 h) and short (8 h) days for 90 days; room 4, constant light. Cyclic ovarian activity, determined by twice-weekly determinations of serum progesterone, commenced in rooms 1, 2 and 3 after a transition from long to short daylength and terminated during long daylength. Thus in rooms 2 and 3 there were two periods of ovarian activity. In room 4 (constant light) ovarian activity began earlier than in room 1 and was of greater duration (240 days v. 190 days). Basal prolactin levels were highest (50-134 micrograms/l) during periods of long daylength and lowest (less than 10 micrograms/l) in short daylength. Ewes maintained in constant light had an intermediate level (21-62 micrograms/l) throughout the study. Melatonin secretion was lowest during daylight (less than 78 pmol/l) and highest during darkness. Night-time melatonin levels varied markedly from hour to hour and between individuals in rooms 1, 2 and 3. There was, however, no consistent seasonal change in the absolute levels of melatonin, although the duration of melatonin secretion did closely follow the length of the dark phase. There were no significant changes in melatonin levels during the oestrous cycle. Ewes kept in constant light had less than 78 pmol melatonin/l throughout the period of study. If the pineal gland is involved in transmitting photoperiodic information to the endocrine system, then it is most likely to be by means of an interaction between duration of melatonin secretion and an underlying change in sensitivity of end organs to melatonin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.