Abstract
In the paper, a reproducing kernel method of solving singular integral equations (SIE) with cosecant kernel is proposed. For solving SIE, difficulties lie in its singular term. In order to remove singular term of SIE, an equivalent transformation is made. Compared with known investigations, its advantages are that the representation of exact solution is obtained in a reproducing kernel Hilbert space and accuracy in numerical computation is higher. On the other hand, the representation of reproducing kernel becomes simple by improving the definition of traditional inner product and requirements for image space of operators are weakened comparing with traditional reproducing kernel method. The final numerical experiments illustrate the method is efficient.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have