Abstract

AbstractControlling the linear growth rate, a critical factor that determines crystal quality, has been a challenge in solution-grown single crystals due to complex crystallization kinetics influenced by multiple parameters. Here we introduce a flux-regulated crystallization (FRC) method to directly monitor and feedback-control the linear growth rate, circumventing the need to control individual growth conditions. When applied to metal halide perovskites, the FRC maintains a stable linear growth rate for over 40 h in synthesizing CH3NH3PbBr3 and CsPbBr3 single crystals, achieving outstanding crystallinity (quantified by a full width at half-maximum of 15.3 arcsec in the X-ray rocking curve) in a centimetre-scale single crystal. The FRC is a reliable platform for synthesizing high-quality crystals essential for commercialization and systematically exploring crystallization conditions, maintaining a key parameter—the linear growth rate—constant, which enables a comprehensive understanding of the impact of other influencing factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call