Abstract

BackgroundSpace environment imposes a range of challenges to mammalian physiology and the gut microbiota, and interactions between the two are thought to be important in mammalian health in space. While previous findings have demonstrated a change in the gut microbial community structure during spaceflight, specific environmental factors that alter the gut microbiome and the functional relevance of the microbiome changes during spaceflight remain elusive.MethodsWe profiled the microbiome using 16S rRNA gene amplicon sequencing in fecal samples collected from mice after a 37-day spaceflight onboard the International Space Station. We developed an analytical tool, named STARMAPs (Similarity Test for Accordant and Reproducible Microbiome Abundance Patterns), to compare microbiome changes reported here to other relevant datasets. We also integrated the gut microbiome data with the publically available transcriptomic data in the liver of the same animals for a systems-level analysis.ResultsWe report an elevated microbiome alpha diversity and an altered microbial community structure that were associated with spaceflight environment. Using STARMAPs, we found the observed microbiome changes shared similarity with data reported in mice flown in a previous space shuttle mission, suggesting reproducibility of the effects of spaceflight on the gut microbiome. However, such changes were not comparable with those induced by space-type radiation in Earth-based studies. We found spaceflight led to significantly altered taxon abundance in one order, one family, five genera, and six species of microbes. This was accompanied by a change in the inferred microbial gene abundance that suggests an altered capacity in energy metabolism. Finally, we identified host genes whose expression in the liver were concordantly altered with the inferred gut microbial gene content, particularly highlighting a relationship between host genes involved in protein metabolism and microbial genes involved in putrescine degradation.ConclusionsThese observations shed light on the specific environmental factors that contributed to a robust effect on the gut microbiome during spaceflight with important implications for mammalian metabolism. Our findings represent a key step toward a better understanding the role of the gut microbiome in mammalian health during spaceflight and provide a basis for future efforts to develop microbiota-based countermeasures that mitigate risks to crew health during long-term human space expeditions.

Highlights

  • Space environment imposes a range of challenges to mammalian physiology and the gut microbiota, and interactions between the two are thought to be important in mammalian health in space

  • Since the Ground animals were housed using the same International Space Station (ISS) habitat equipment as the Flight animals under matched conditions of temperature, humidity, and CO2 levels in an ISS Environmental Simulator (ISSES), our observations suggest that factors specific to spaceflight induce an elevation in the evenness but not richness of the gut microbial community in mice

  • Since the Rodent Research-1 (RR-1) groups were each associated with a distinct set of experimental conditions (Fig. 1a), we formulated the PERMANOVA test to replace animal groups with these associated factors in an additive model, in order to obtain an approximated estimation of the contributions of each condition to the overall variance of the gut microbial composition

Read more

Summary

Introduction

Space environment imposes a range of challenges to mammalian physiology and the gut microbiota, and interactions between the two are thought to be important in mammalian health in space. The space environment imposes many challenges to mammalian physiology, including functions known to interact with the gut microbiota in a bidirectional fashion. Specific space environmental factors, such as microgravity and radiation, are thought to alter the gut microbiota, representing a risk to astronaut health, especially during long-term spaceflight missions [3]. We previously studied the gut microbiome of a twin astronaut and found alterations during his 1-year mission onboard the International Space Station (ISS), which were not observed in his twin brother on Earth during the same period of time [4]. The specific space environmental factors that influence the gut microbiome and the impact of these changes on host functions remain unknown

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call