Abstract

The animal gut microbiota evolves quickly towards a complex community and plays crucial roles in its host’s health and development. Factors such as host genetics and environmental changes are regarded as important for controlling the dynamics of animal gut microbiota. Migratory animals are an important group for studying how these factors influence gut microbiota because they experience strong environmental perturbations during migration. The commercially important grey mullet, Mugil cephalus, is a cosmopolitan species complex that display reproductive migration behaviour. There are three cryptic species of M. cephalus fish distributed across the Northwest Pacific, and their spawning sites overlap in the Taiwan Strait. This extraordinary natural occurrence makes the grey mullet an ideal model organism for exploring the nature of wild animal-gut microbiota relationships and interactions. This study investigates the diversity and structure of the gut microbial community in three cryptic M. cephalus species using 16S rRNA amplicon sequencing. Gut microbial compositions from adult and juvenile fish samples were analysed. Our results indicate that gut microbial communities within the grey mullet share a core microbiome dominated by Proteobacteria, Firmicutes and Actinobacteria. However, the structures of gut microbial communities were more distinct between adult mullet groups than they were between juvenile ones. Intriguingly, we found that adult fish that migrate to different geographical tracts harbour gut microbiota similar to historical records of seawater microflora, along their respective migration routes. This observation provides new insights into the interaction between aquatic animal gut microbial communities and the environments along their hosts’ migratory routes, and thus warrants future study.

Highlights

  • The animal gut microbiota evolves quickly towards a complex community and plays crucial roles in its host’s health and development

  • The migratory tracts of these three cryptic species are believed to be in the Northwest Pacific (Fig. 1)[15]. Shen and his co-workers analysed over 700 grey mullet samples from 12 locations in the East and South China Seas (SCS) using mtDNA Cytochrome Oxidase I (COI) sequences and ten microsatellite loci, and indicated that cryptic species NWP1 migrates to the Taiwan Strait from estuarine www.nature.com/scientificreports environments and adjacent areas in the East China Sea (ECS), whereas NWP2 and NWP3 migrate following the Kuroshio Currents from the SCS in the middle of the winter

  • The grey mullet M. cephalus has three known cryptic species that use the Taiwan Strait for spawning and have fascinating migratory histories, making them ideal model species for investigating whether the divergence in gut microbiota is triggered by the influence of host genetic background and migration

Read more

Summary

Introduction

The animal gut microbiota evolves quickly towards a complex community and plays crucial roles in its host’s health and development. A recent study provided evidence that animal gut microbial communities offer resistance during their hosts’ migration; the study came to this conclusion after finding a high similarity between the gut microbiota of stint flocks migrating thousands of kilometres and resident birds that had inhabited the same field for a full year[9] These observations suggest that migratory bird gut microbiota are shaped by complex interactions among multiple factors. The grey mullet M. cephalus has three known cryptic species that use the Taiwan Strait for spawning and have fascinating migratory histories, making them ideal model species for investigating whether the divergence in gut microbiota is triggered by the influence of host genetic background and migration

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call