Abstract

The random part of the integral field harmonics in a series of superconducting magnets has been used in the past to identify the reproducibility of the coil positioning. Using a magnetic model and a Monte-Carlo approach, coil blocks are randomly moved and the amplitude that best fits the magnetic measurements is interpreted as the reproducibility of the coil position. Previous values for r.m.s. coil displacements for Nb-Ti magnets range from 0.05 to 0.01 mm. In this paper, we use this approach to estimate the reproducibility in the coil position for Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn short models that have been built in the framework of the FNAL core program (HFDA dipoles) and of the LARP program (TQ quadrupoles). Our analysis shows that the Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn models manufactured in the past years correspond to r.m.s. coil displacements of at least 5 times what is found for the series production of a mature Nb-Ti technology. On the other hand, the variability of the field harmonics along the magnet axis shows that Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn magnets have already reached values similar to this obtained for Nb-Ti ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.