Abstract

To identify the condition of steel pipelines beyond the line of sight during operation, this study presents a design methodology for a differential probe, along with a harmonic magnetic field excitation technique and its corresponding data processing methodology. The coaxial arrangement of the excitation coils in a planar configuration generates a potent induced magnetic field, ensuring a sufficient standoff distance. Under the influence of harmonic excitation, the magnetic permeability of the pipeline surface decreases, resulting in an increased detection depth. Periodic alterations in the magnetic permeability of the pipeline surface enhance the amplitude of defects. Adjusting the position of the induction coil minimizes interference from the excitation magnetic field, thereby obtaining a pure induced magnetic field. Differential processing is applied to the two induction coils to counteract interference from the background magnetic field. Finally, the effectiveness and reliability of this probe are validated through three experiments: pipeline positioning, weld seam inspection, and damage detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.