Abstract

To systematically assess the reproducibility of radiomics features from ultrasound (US) images during image acquisition and processing. A standardized phantom was scanned to obtain US images. Reproducibility of radiomics features from US images, also known as ultrasomics features, was explored via (a) intra-US machine: changing the US acquisition parameters including gain, focus, and frequency; (b) inter-US machine: comparing three different scanners; (c) changing segmentation locations; and (d) inter-platform: comparing features extracted by the Ultrasomics and PyRadiomics algorithm platforms. Reproducible ultrasomics features were selected based on coefficients of variation. A total of 108 US images from three scanners were obtained; 5253 ultrasomics features including seven categories of features were extracted and evaluated for each US image. From intra-US machine analysis, 37.0-38.8% of features showed good reproducibility. From inter-US machine analysis, 42.8% (2248/5253) of features exhibited good reproducibility. From segmentation location analysis, 55.7-57.6% of features showed good reproducibility. No significant difference in the normalized feature ranges was found between the 100 features extracted by the Ultrasomics and PyRadiomics platforms with the same algorithm (p = 0.563). A total of 1452 (27.6%) ultrasomics features were reproducible whenever intra-/inter-US machine or segmentation location were changed, most of which were wavelet and shearlet features. Different acquisition parameters, US scanners, segmentation locations, and feature extraction platforms affected the reproducibility of ultrasomics features. Wavelet and shearlet features showed the best reproducibility across all procedures. • Different acquisition parameters, US scanners, segmentation locations, and feature extraction platforms affected the reproducibility of ultrasomics features. • A total of 1452 (27.6%) ultrasomics features were reproducible whenever intra-/inter-US machine or segmentation location were changed. • Wavelet and shearlet features showed the best reproducibility across all procedures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call