Abstract
PurposeTo compare the reproducibility of two-dimensional (2D) peripapillary retinal nerve fiber layer (RNFL) thickness and three-dimensional (3D) neuroretinal rim measurements using spectral domain optical coherence tomography (SDOCT) in normal and glaucoma subjects.MethodsOne eye per subject for 27 normal and 40 glaucoma subjects underwent repeat SDOCT RNFL thickness scans and optic nerve volume scans on the same day. From the volume scan, custom software calculated five neuroretinal rim parameters: 3D minimum distance band (MDB) thickness, 3D MDB area, 3D rim volume, 2D rim area, and 2D rim thickness. Within-subject variance (Sw), coefficient of variation (CV), and intraclass correlation coefficient (ICC) were analyzed.ResultsMDB thickness and RNFL thickness have similar reproducibility among normal and glaucoma subjects (eg, global MDB thickness CVs of 2.4% and 3.6%, and global RNFL thickness CVs of 1.3% and 2.2%; P > 0.05 for both comparisons). Reproducibility of MDB thickness was lower in glaucoma patients for the superior and inferior quadrants compared to normal subjects (CVs of 9.6% versus 3.4% and 6.9% versus 2.7%; P < 0.05, respectively). There were no statistically significant differences between both groups for RNFL thickness in the four quadrants. For both patient groups and for all regions, MDB thickness had the lowest CVs among all five neuroretinal rim parameters (eg, global MDB thickness CVs of 2.4% and 3.6% versus 3.0% and 18.9% for the other four neuroretinal rim parameters).ConclusionGlobal MDB and global RNFL thickness are similarly reproducible among normal and glaucoma subjects, though MDB thickness for the superior and inferior quadrants is less reproducible among glaucoma subjects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.