Abstract
Somatosensory processing can be probed empirically through vibrotactile psychophysical experiments. Psychophysical approaches are valuable for investigating both normal and abnormal tactile function in healthy and clinical populations. To date, the test-retest reliability of vibrotactile detection and discrimination thresholds has yet to be established. This study sought to assess the reproducibility of vibrotactile detection and discrimination thresholds in human adults using an established vibrotactile psychophysical battery. Fifteen healthy adults underwent three repeat sessions of an eleven-task battery that measured a range of vibrotactile measures, including reaction time, detection threshold, amplitude and frequency discrimination, and temporal order judgement. Coefficients of variation and intraclass correlation coefficients (ICCs) were calculated for the measures in each task. Linear mixed-effects models were used to test for length and training effects and differences between tasks within the same domain. Reaction times were shown to be the most reproducible (ICC: ~0.9) followed by detection thresholds (ICC: ~0.7). Frequency discrimination thresholds were the least reproducible (ICC: ~0.3). As reported in prior studies, significant differences in measures between related tasks were also found, demonstrating the reproducibility of task-related effects. These findings show that vibrotactile detection and discrimination thresholds are reliable, further supporting the use of psychophysical experiments to probe tactile function.
Highlights
Somatosensory processing can be probed empirically through vibrotactile psychophysical experiments
The vibrotactile stimuli used in the paradigms fall within the flutter range of touch (
The Intrasubject variability (ISV) of subjects’ reaction times was shown to have excellent test-retest reliability, a finding observed in other domains and modalities[53,54]
Summary
Somatosensory processing can be probed empirically through vibrotactile psychophysical experiments. As reported in prior studies, significant differences in measures between related tasks were found, demonstrating the reproducibility of task-related effects These findings show that vibrotactile detection and discrimination thresholds are reliable, further supporting the use of psychophysical experiments to probe tactile function. Psychophysical testing using flutter-range stimuli www.nature.com/scientificreports permits interrogation of the somatosensory and higher-level systems in healthy and pathological neurobiology This battery and its variants have been used to investigate tactile (dys)function in autism spectrum disorder[17,18,19,20,21,22], Tourette syndrome[23], and attention-deficit hyperactivity disorder[24]; in ageing[25,26]; in multimodal studies involving magnetic resonance spectroscopic measures of GABA27–29; in concussion[30,31]; and in conjunction with neurostimulation[32]. This study aimed to assess the test-retest reliability of vibrotactile detection and discrimination thresholds in healthy adults using an established vibrotactile processing battery comprised of paradigms (in both short and long forms) designed to target different aspects of tactile processing
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have