Abstract

BackgroundPost processing for brain spectra has a great influence on the fit quality of individual spectra, as well as on the reproducibility of results from comparable spectra. This investigation used pairs of spectra, identical in system parameters, position and time assumed to differ only in noise. The metabolite amplitudes of fitted time domain spectroscopic data were tested on reproducibility for the main brain metabolites.MethodsProton spectra of white matter brain tissue were acquired with a short spin echo time of 30 ms and a moderate repetition time of 1500 ms at 1.5 T. The pairs were investigated with one time domain post-processing algorithm using different parameters. The number of metabolites, the use of prior knowledge, base line parameters and common or individual damping were varied to evaluate the best reproducibility.ResultsThe protocols with most reproducible amplitudes for N-acetylaspartate, creatine, choline, myo-inositol and the combined Glx line of glutamate and glutamine in lesion free white matter have the following common features: common damping of the main metabolites, a baseline using only the points of the first 10 ms, no additional lipid/macromolecule lines and Glx is taken as the sum of separately fitted glutamate and glutamine. This parameter set is different to the one delivering the best individual fit results.DiscussionAll spectra were acquired in “lesion free” (no lesion signs found in MR imaging) white matter. Spectra of brain lesions, for example tumors, can be drastically different. Thus the results are limited to lesion free brain tissue. Nevertheless the application to studies is broad, because small alterations in brain biochemistry of lesion free areas had been detected nearby tumors, in patients with multiple sclerosis, drug abuse or psychiatric disorders.ConclusionMain metabolite amplitudes inside healthy brain can be quantified with a normalized root mean square deviation around 5 % using CH3 of creatine as reference. Only the reproducibility of myo-inositol is roughly twice as bad. The reproducibility should be similar using other references like internal or external water for an absolute concentration evaluation and are not influenced by relaxation corrections with literature values.

Highlights

  • Post processing for brain spectra has a great influence on the fit quality of individual spectra, as well as on the reproducibility of results from comparable spectra

  • Main metabolite amplitudes inside healthy brain can be quantified with a normalized root mean square deviation around 5 % using CH3 of creatine as reference

  • In principle the method is widely available at magnetic resonance imaging (MRI) units with field strengths above

Read more

Summary

Introduction

Post processing for brain spectra has a great influence on the fit quality of individual spectra, as well as on the reproducibility of results from comparable spectra This investigation used pairs of spectra, identical in system parameters, position and time assumed to differ only in noise. Biochemical concentrations inside specific body regions can be evaluated by fitting magnetic resonance spectroscopic data using model signals of the metabolites to be. Metabolite model signals in time domain have the following parameters adjustable by the fit algorithm: amplitude (corresponding to the area under a line in frequency domain data), frequency (ppm position), damping (line width) and phase (influencing the line shape in frequency domain) [9,10,11]. For example: the metabolite frequency is fixed to another metabolite or limited to a region around the theoretical value; the metabolites completely or partly have a common damping or phase

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.