Abstract
BackgroundWhen the infarct border zone is stimulated prematurely, a unidirectional block line (UBL) can form and lead to double-loop (figure-of-eight) reentrant ventricular tachycardia (VT) with a central isthmus. The isthmus is composed of an entrance, center, and exit. It was hypothesized that for certain stimulus site locations and coupling intervals, the UBL would coincide with the isthmus entrance boundary, where infarct border zone thickness changes from thin-to-thick in the travel direction of the premature stimulus wavefront. MethodA quantitative model was developed to describe how thin-to-thick changes in the border zone result in critically convex wavefront curvature leading to conduction block, which is dependent upon coupling interval. The model was tested in 12 retrospectively analyzed postinfarction canine experiments. Electrical activation was mapped for premature stimulation and for the first reentrant VT cycle. The relationship of functional conduction block forming during premature stimulation to functional block during reentrant VT was quantified. ResultsFor an appropriately placed stimulus, in accord with model predictions: 1. The UBL and reentrant VT isthmus lateral boundaries overlapped (error: 4.8±5.7mm). 2. The UBL leading edge coincided with the distal isthmus where the center-entrance boundary would be expected to occur. 3. The mean coupling interval was 164.6±11.0ms during premature stimulation and 190.7±20.4ms during the first reentrant VT cycle, in accord with model calculations, which resulted in critically convex wavefront curvature and functional conduction block, respectively, at the location of the isthmus entrance boundary and at the lateral isthmus edges. DiscussionReentrant VT onset following premature stimulation can be explained by the presence of critically convex wavefront curvature and unidirectional block at the isthmus entrance boundary when the premature stimulation interval is sufficiently short. The double-loop reentrant circuit pattern is a consequence of wavefront bifurcation around this UBL followed by coalescence, and then impulse propagation through the isthmus. The wavefront is blocked from propagating laterally away from the isthmus by sharp increases in border zone thickness, which results in critically convex wavefront curvature at VT cycle lengths.
Highlights
In postinfarction hearts, a reentrant circuit causing ventricular tachycardia (VT) can form within the infarct border zone, which is the thin region of remaining viable myocardium located between n Correspondence to: Columbia University, 630 West 168th Street, P&S 7-446, New York, NY 10032, United States.the infarct and the epicardial surface of the heart [1]
From an archived retrospective database of canine postinfarction, experiments were selected for analysis in which monomorphic ventricular tachycardia with a stable double-loop reentrant circuit was inducible by premature stimulation
During the normal sinus rhythm, premature stimulation, and during any monomorphic VT that was induced, electrograms were simultaneously recorded from the epicardial surface of the left ventricle, where the border zone usually forms in postinfarction canine hearts after left anterior descending coronary artery (LAD) ligation, from 196 to 312 bipolar electrodes configured as a multielectrode array
Summary
A reentrant circuit causing ventricular tachycardia (VT) can form within the infarct border zone, which is the thin region of remaining viable myocardium located between n Correspondence to: Columbia University, 630 West 168th Street, P&S 7-446, New York, NY 10032, United States.the infarct and the epicardial surface of the heart [1]. When the infarct border zone is stimulated prematurely, a unidirectional block line (UBL) can form and lead to double-loop (figure-of-eight) reentrant ventricular tachycardia (VT) with a central isthmus. It was hypothesized that for certain stimulus site locations and coupling intervals, the UBL would coincide with the isthmus entrance boundary, where infarct border zone thickness changes from thin-to-thick in the travel direction of the premature stimulus wavefront. Method: A quantitative model was developed to describe how thin-to-thick changes in the border zone result in critically convex wavefront curvature leading to conduction block, which is dependent upon coupling interval. 2. The UBL leading edge coincided with the distal isthmus where the center-entrance boundary would be expected to occur
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have