Abstract
The development of skeletal muscle in the vertebrate embryo is controlled by a transcriptional cascade that includes the four myogenic regulatory factors Myf-5, MyoD, Myogenin, and MRF4. The dynamic expression pattern of myf-5 during myogenesis is thought to be consistent with its role during early determination of the myogenic lineage. To study the factors and mechanisms, which regulate myf-5 transcription in Xenopus, we isolated a genomic DNA clone containing 4858 bp of Xmyf-5 5′ flanking region. Using a transgenic reporter assay, we show here that this genomic contig is sufficient to recapitulate the dynamic stage- and tissue-specific expression pattern of Xmyf-5 from the gastrula to tail bud stages. For the primary induction of myf-5 transcription, we identify three main regulatory elements, which are responsible for (i) activation in dorsal mesoderm, (ii) activation in ventral mesoderm, and (iii) repression in midline mesoderm, respectively. Their combined activities define the two-winged expression domain of myf-5 in the preinvoluted mesoderm. Repression in midline mesoderm is mediated by a single TCF binding site located in the 5′ end of the −4.8 kbp sequence, which binds XTcf-3 protein in vitro. Endogenous Wnt signaling in the lateral mesoderm is required to overcome the long-range repression through this distal TCF site, and to stimulate myf-5 transcription independently from it. The element for ventral mesoderm activation responds to Activin. Together, these results describe a regulatory mosaic of repression and activation, which defines the myf-5 expression profile in the frog gastrula.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.