Abstract
The Krüppel-associated box (KRAB) domain has been described as a eukaryotic repressor of transcription. We show that fusion of KRAB to DNA-binding-domains provides a novel approach to inhibit expression of a replication-competent human immunodeficiency virus (HIV) genome. The KRAB domain from the human zinc finger protein KOX1 was combined with the DNA binding domain of the Escherichia coli tetracycline repressor (TetR). Constitutive expression of the TetR–KRAB protein in HeLa cells inhibited virus production from an HIV genome encoding TetR target sequences by 80%. The same inhibition was observed with HIV-promoter-driven reporter plasmids. The specificity of inhibition was shown with informative KRAB mutants, plasmids lacking the respective target sequences, and by reversal of the TetR–KRAB-mediated inhibition with tetracycline. Virus production was suppressed by binding of TetR–KRAB at a distance of 6 kbp to the promoter. We therefore conclude that any site of the genuine HIV genome could serve as target of a chimeric KRAB repressor protein. Specific targeting of the KRAB domain by artificially selected binding domains may be generally applicable to control transcription in mammalian cells.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have