Abstract
The Delaunay triangulation of a set of points P on a hyperbolic surface is the projection of the Delaunay triangulation of the set P~\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\widetilde{P}$$\\end{document} of lifted points in the hyperbolic plane. Since P~\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\widetilde{P}$$\\end{document} is infinite, the algorithms to compute Delaunay triangulations in the plane do not generalize naturally. Using a Dirichlet domain, we exhibit a finite set of points that captures the full triangulation. We prove that an edge of a Delaunay triangulation has a combinatorial length (a notion we define in the paper) smaller than 12g-6\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$12g-6$$\\end{document} with respect to a Dirichlet domain. To achieve this, we introduce new tools, of intrinsic interest, that capture the properties of length-minimizing curves in the context of closed curves. We then use these to derive structural results on Delaunay triangulations and exhibit certain distance minimizing properties of both the edges of a Delaunay triangulation and of a Dirichlet domain. The bounds produced in this paper depend only on the topology of the surface. They provide mathematical foundations for hyperbolic analogs of the algorithms to compute periodic Delaunay triangulations in Euclidean space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.