Abstract
We consider a path-valued process which is a generalization of the classical Brownian snake introduced by Le Gall. More precisely we add a drift term b to the lifetime process, which may depends on the spatial process. Consequently, this introduces a coupling between the lifetime process and the spatial motion. This process can be obtained from the standard Brownian snake by Girsanov's theorem or by killing of the spatial motion. It can also be viewed as the limit of discrete snakes or, in some special cases, as conditioned Brownian snakes. We also use this process to describe the solutions of the non-linear partial differential equation j u =4 u 2 +4 bu .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.