Abstract

In the paper the representation of the finite order variational sequence on fibered manifolds in field theory is studied. The representation problem is completely solved by a generalization of the integration by parts procedure using the concept of the Lie derivative of forms with respect to vector fields along canonical maps of prolongations of fibered manifolds. A close relationship between the obtained coordinate invariant representation of the variational sequence and some familiar objects of physics, such as Lagrangians, dynamical forms, Euler–Lagrange mapping and Helmholtz–Sonin mapping is pointed out and illustrated by examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.