Abstract

Regions of the cortical autonomic network (CAN) are activated during muscle contraction. However, it is not known to what extent CAN activation patterns reflect muscle sensory inputs, top-down signals from the motor cortex, and/or motor drive to cardiovascular structures. The present study explored the functional representation of somatosensory afferent input within the CAN with an a priori interest in the insula and ventral medial prefrontal cortex (vMPFC) (n=12). Heart rate (HR) and functional MRI data were acquired during 1) 30s periods of electrical stimulation of the wrist flexors at sub-motor (SUB; Type I,II afferents) and 2) motor thresholds (MOT; Type I,II,III afferents), 3) volitional wrist flexion at 5% maximal voluntary contraction (MVC) to match the MOT tension (VOL5%), and 4) volitional handgrip at 35% MVC to elicit tachycardia (VOL35%). Compared with rest, HR did not change during SUB, MOT, or VOL5% but increased during VOL35% (p<0.001). High frequency HR variability was 29.42±18.87ms2 (mean±S.D.) at rest and 39.85±27.60ms2 during SUB (p=0.06). High frequency HR variability was decreased during VOL35% compared to rest (p≤0.005). SUB increased activity in the bilateral posterior insula, vMPFC, subgenual anterior cingulate cortex (ACC), mid-cingulate cortex (MCC), and posterior cingulate cortex. MOT increased activity in the left posterior insula and MCC. During VOL5%, activity increased in the right anterior-mid insula. VOL35% was associated with activity in the bilateral insula as well as vMPFC and subgenual ACC deactivation. These data suggest that the left posterior insula processes sensory input from muscle during passive conditions and specifically that Type I and/or II muscle afferent stimulation during SUB impacts the vMPFC and/or subgenual ACC, regions believed to be involved in brain default mode and parasympathetic activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.