Abstract
We investigate how continuous linear functionals can be represented in terms of generic operators and certain kernels (Peano kernels), and we study lower bounds for the operators as a consequence, in the space of square-integrable functions. We apply and develop the theory for the Riemann–Liouville fractional derivative (an inverse of the Riemann–Liouville integral), where inequalities are derived with the Gaussian hypergeometric function. This work is inspired by the recent contributions by Fernandez and Buranay (J Comput Appl Math 441:115705, 2024) and Jornet (Arch Math, 2024).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.