Abstract
This paper provides a formal mathematical representation of a wildfire simulation, reviews the most common scoring methods using this formalism, and proposes new methods that are explicitly designed to evaluate a forest fire simulation from ignition to extinction. These scoring or agreement methods are tested with synthetic cases in order to expose strengths and weaknesses, and with more complex fire simulations using real observations. An implementation of the methods is provided as well as an overview of the software package. The paper stresses the importance of scores that can evaluate the dynamics of a simulation, as opposed to methods relying on snapshots of the burned surfaces computed by the model. The two new methods, arrival time agreement and shape agreement, take into account the dynamics of the simulation between observation times. Although no scoring method is able to perfectly synthesise a simulation error in a single number, the analysis of the scores obtained on idealised and real simulations provides insights into the advantages of these methods for the evaluation of fire dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.