Abstract

Inspired by the recent success of sequence modeling in RL and the use of masked language model for pre-training, we propose a masked model for pre-training in RL, RePreM (Representation Pre-training with Masked Model), which trains the encoder combined with transformer blocks to predict the masked states or actions in a trajectory. RePreM is simple but effective compared to existing representation pre-training methods in RL. It avoids algorithmic sophistication (such as data augmentation or estimating multiple models) with sequence modeling and generates a representation that captures long-term dynamics well. Empirically, we demonstrate the effectiveness of RePreM in various tasks, including dynamic prediction, transfer learning, and sample-efficient RL with both value-based and actor-critic methods. Moreover, we show that RePreM scales well with dataset size, dataset quality, and the scale of the encoder, which indicates its potential towards big RL models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.