Abstract
Different pathologies of the hip are characterized by the abnormal shape of the bony structures of the joint, namely the femur and the acetabulum. Three-dimensional (3D) models of the hip can be used for diagnosis, biomechanical simulation, and planning of surgical treatments. These models can be generated by building 3D surfaces of the joint's structures segmented on magnetic resonance (MR) images. Deep learning can avoid time-consuming manual segmentations, but its performance depends on the amount and quality of the available training data. Data augmentation and transfer learning are two approaches used when there is only a limited number of datasets. In particular, data augmentation can be used to artificially increase the size and diversity of the training datasets, whereas transfer learning can be used to build the desired model on top of a model previously trained with similar data. This study investigates the effect of data augmentation and transfer learning on the performance of deep learning for the automatic segmentation of the femur and acetabulum on 3D MR images of patients diagnosed with femoroacetabular impingement. Transfer learning was applied starting from a model trained for the segmentation of the bony structures of the shoulder joint, which bears some resemblance to the hip joint. Our results suggest that data augmentation is more effective than transfer learning, yielding a Dice similarity coefficient compared to ground-truth manual segmentations of 0.84 and 0.89 for the acetabulum and femur, respectively, whereas the Dice coefficient was 0.78 and 0.88 for the model based on transfer learning. The Accuracy for the two anatomical regions was 0.95 and 0.97 when using data augmentation, and 0.87 and 0.96 when using transfer learning. Data augmentation can improve the performance of deep learning models by increasing the diversity of the training dataset and making the models more robust to noise and variations in image quality. The proposed segmentation model could be combined with radiomic analysis for the automatic evaluation of hip pathologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.