Abstract

Background: Computer-aided repositioning of approved drugs is an increasingly popular strategy for the discovery of effective therapies. The potency of the newly repositioned drugs can be optimized using them as a component of an effective drug combination, thereby achieving the desired therapeutic effect at a lower and more tolerable drug concentration. Aim and Objectives: The aim of the study was to perform structure-based virtual screening and repurposing of FDA-approved drugs for the treatment of methicillin resistance by Staphylococcus aureus (SA) and perform an in vitro validation of the prediction. Materials and Methods: Following ethical clearance at the Department of Pharmacology and Therapeutics, College of Health Sciences, Usmanu Danfodiyo University Sokoto, molecular docking was performed against 5 validated protein targets involved in the development of methicillin resistance by SA and an in vitro validation of the prediction was done using 3 of the top-ranking drug candidates against methicillin-resistant vancomycin-susceptible strain of the pathogen (ATCC 43300). Results: Desmopressin and docetaxel, two of the 20 top-ranking repurposed drugs discovered through virtual screening, enhanced the inhibitory effect of oxacillin against the ATCC 43300 SA strain in a ratio-dependent manner, although each of the two drugs singly was only weakly effective against the bacterial strain. The standard drug, vancomycin (also among the top-scoring candidates), alone, was effective against ATCC 43300 strain and in combination with oxacillin, the two drugs produced a ratio-dependent synergistic effect against the bacterial strain. Conclusion: These findings suggest that oxacillin-based combinations with desmopressin, docetaxel, and the standard drug vancomycin, three of the 20 top-ranking drugs, at optimum ratios, may be beneficial in reversing the resistance of the ATCC 43300 SA strain to oxacillin, thus supporting the prediction of the molecular docking results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.