Abstract
Nephron formation continues throughout kidney morphogenesis in both mice and humans. Lineage tracing studies in mice identified a self-renewing Six2-expressing nephron progenitor population able to give rise to the full complement of nephrons throughout kidney morphogenesis. To investigate the origin of nephrons within human pluripotent stem cell-derived kidney organoids, we performed a similar fate-mapping analysis of the SIX2-expressing lineage in induced pluripotent stem cell (iPSC)-derived kidney organoids to explore the feasibility of investigating lineage relationships in differentiating iPSCs invitro Using CRISPR/Cas9 gene-edited lineage reporter lines, we show that SIX2-expressing cells give rise to nephron epithelial cell types but not to presumptive ureteric epithelium. The use of an inducible (CreERT2) line revealed a declining capacity for SIX2+ cells to contribute to nephron formation over time, but retention of nephron-forming capacity if provided an exogenous WNT signal. Hence, while human iPSC-derived kidney tissue appears to maintain lineage relationships previously identified in developing mouse kidney, unlike the developing kidney invivo, kidney organoids lack a nephron progenitor niche capable of both self-renewal and ongoing nephrogenesis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have