Abstract
The particle hygroscopicity plays a key role in determining the particle deposition in the human respiratory tract (HRT). In this study, the effects of hygroscopicity and mixing state on regional and total deposition doses for children, adults, and elderly were quantified using the Multiple-Path Particle Dosimetry model based on the size-resolved particle hygroscopicity measurements at HRT-like conditions (relative humidity = 98 %) performed in the North China Plain. The measured particle population with an external mixing state was dominated by hygroscopic particles (number fraction = (91.5 ± 5.7) %, mean ± standard deviation (SD), the same below). Particle hygroscopic growth in the HRT led to a reduction by around 24 % in the total doses of submicron particles for all age groups. Such reduction was mainly caused by the growth of hygroscopic particles and was more pronounced in the pulmonary and tracheobronchial regions. Regardless of hygroscopicity, the elderly group had the highest total dose among the three age groups. With 270 nm in diameter as the boundary, the total deposition doses of particles smaller than this diameter were overestimated and those of larger particles were underestimated assuming no particle hygroscopic growth in the HRT. From the perspective of the daily variation, the deposition rates of hygroscopic particles with an average of 2.88 × 109 #/h (SD = 8.10 × 108 #/h) during the daytime were larger than those ((2.32 × 109) ± (2.41 × 108) #/h) at night. On the contrary, hydrophobic particles interpreted as freshly emitted soot and primary organic aerosols exhibited higher deposition rates at nighttime ((3.39 ± 1.34) × 108 #/h) than those in the day ((2.58 × 108) ± (7.60 × 107) #/h). The traffic emissions during the rush hours enhanced the deposition rate of hydrophobic particles. This work provides a more explicit assessment of the impact of hygroscopicity and mixing state on the deposition pattern of submicron particles in the HRT.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have