Abstract
Replication-defective vectors based on murine oncoretroviruses were the first gene transfer vectors to be used in successful gene therapies. Despite this achievement, they have two major drawbacks: insufficient efficacy for in vivo gene transfer and insertional mutagenesis. Attempts to overcome these problems have led to two retroviral vector designs of principally opposite character: replication-competent vectors transducing largely intact genomes and genome-free vectors. Replication-competent retroviral vectors have achieved dramatically improved efficacy for in vivo cancer gene therapy and genome-free retroviral vectors expressing different kinds of antigens have proven excellent as immunogens. Current developments aim to improve the safety of the replication-competent vectors and to augment the production efficiency of the genome-free vectors by expression from heterologous viral or non-viral vectors. Together with the continuous advances of classical defective retroviral vectors for ex vivo gene therapy, these developments illustrate that, due to their tremendous design versatility, retroviral vectors remain important vectors for gene therapy applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.