Abstract

ABSTRACTWe investigate the merits of replication, and provide methods for optimal design (including replicates), with the goal of obtaining globally accurate emulation of noisy computer simulation experiments. We first show that replication can be beneficial from both design and computational perspectives, in the context of Gaussian process surrogate modeling. We then develop a lookahead-based sequential design scheme that can determine if a new run should be at an existing input location (i.e., replicate) or at a new one (explore). When paired with a newly developed heteroscedastic Gaussian process model, our dynamic design scheme facilitates learning of signal and noise relationships which can vary throughout the input space. We show that it does so efficiently, on both computational and statistical grounds. In addition to illustrative synthetic examples, we demonstrate performance on two challenging real-data simulation experiments, from inventory management and epidemiology. Supplementary materials for the article are available online.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call