Abstract

Sequential experimental design methods use previous data and results to guide the choice and design of future experiments. This paper describes the application of a sequential design technique to produce optimal resistivity imaging surveys for time-lapse geoelectrical monitoring experiments. These survey designs are time-dependent, and are optimised to focus a greater degree of the image resolution on the regions of the subsurface that are actively changing than static optimised surveys that do not change over time. The sequential design method is applied to a synthetic 2.5D monitoring experiment comprising a well-defined cylindrical target moving along a trajectory that changes its depth and lateral position. The data are simulated to be as realistic as possible, incorporating survey design constraints for a real resistivity monitoring system and realistic levels and distributions of random noise, in order to match a forthcoming experimental test of the method. The results of the simulations indicate that sequentially designed optimal surveys yield an increase in image quality over and above that produced by using a static (time-independent) optimised survey.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.