Abstract

The currently widespread and increasing prevalence of resistant bacterial pathogens is a significant medical problem. In clinical strains of staphylococci, the genetic determinants that confer resistance to antimicrobial agents are often located on mobile elements, such as plasmids. Many of these resistance plasmids are capable of horizontal transmission to other bacteria in their surroundings, allowing extraordinarily rapid adaptation of bacterial populations. Once the resistance plasmids have been spread, they are often perpetually maintained in the new host, even in the absence of selective pressure. Plasmid persistence is accomplished by plasmid-encoded genetic systems that ensure efficient replication and segregational stability during cell division. Staphylococcal plasmids utilize proteins of evolutionarily diverse families to initiate replication from the plasmid origin of replication. Several distinctive plasmid copy number control mechanisms have been studied in detail and these appear conserved within plasmid classes. The initiators utilize various strategies and serve a multifunctional role in (i) recognition and processing of the cognate replication origin to an initiation active form and (ii) recruitment of host-encoded replication proteins that facilitate replisome assembly. Understanding the detailed molecular mechanisms that underpin plasmid replication may lead to novel approaches that could be used to reverse or slow the development of resistance.

Highlights

  • Plasmids are accessory extra-chromosomal genetic elements that provide bacteria with various adaptive qualities that have contributed to their success in diverse environmental niches

  • The different types of plasmid replication systems described here encompass the diversity of plasmids recognized in staphylococci

  • Plasmids using each of these systems have been shown to act as vehicles for the carriage of antimicrobial resistance genes

Read more

Summary

Introduction

Plasmids are accessory extra-chromosomal genetic elements that provide bacteria with various adaptive qualities that have contributed to their success in diverse environmental niches. The essential components include (i) an origin of replication (dso in RCR plasmids or ori in theta-replicating plasmids), (ii) a replication control element (antisense RNA and/or protein), and (iii) a gene encoding the replication initiation protein, Rep. In RCR plasmids, the double-stranded origin, dso, contains a sequence-specific binding site for the Rep protein and a short, partially palindromic sequence.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.