Abstract

In recent years, the stunning performance of transition metal dichalcogenides (TMDCs) has been utilized in the area of field effect transistors, integrated circuits, photodetectors, light generation and harvesting, valleytronics, and van der Waals (vdW) heterostructures. However, the optoelectronic application of TMDCs in realizing efficient, ultrafast metaphotonic devices in the terahertz part of the electromagnetic spectrum has remained unexplored. The most studied member of the TMDC family, i.e., MoS2, shows an ultrafast carrier relaxation after photoexcitation with near‐infrared femtosecond pulse of energy above the bandgap. Here, this study investigates the photoactive properties of MoS2 to demonstrate an ultrasensitive active switching and modulation of the sharp Fano resonances in MoS2‐coated metamaterials consisting of asymmetric split ring resonator arrays. The results show that all‐optical switching and modulation of micrometer scale subwavelength Fano resonators can be achieved on a timescale of hundred picoseconds at moderate excitation pump fluences. The precise and active control of the MoS2‐based hybrid metaphotonic devices open up opportunities for the real‐world technologies and realization of ultrafast switchable sensors, modulators, filters, and nonlinear devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.