Abstract
Binary pulsars demonstrate unusual gravitational behaviour that is a careful balance between the type of orbit, companion star and neutron star weights, and neutron star spin rate. Some binary pulsars are believed to have the same weight for both stars moving in a highly elliptical orbit while some binaries with vast weight differences, are in near-circular orbits. This is counterintuitive and may lie outside of the conventional wisdom. Each neutron star in these binary systems spins at different rates, implying that rotation per Winterbergâs conjecture may induce a repulsive gravitational source analogous to generating negative matter that can negate inertial effects. Moreover, swirling jets leaving black holes imply that these jets may move either at greater than light speed or also become a repulsive gravitational source. Interactions between the pulsar binaryâs two bodies and behaviour of two of Jupiterâs moons may also validate notions from Jefimenko, who claims that gravity induces angular momentum. If true, these findings show that a significant relationship exists between gravity and angular momentum as well as suggest angular momentum may result in linear momentum after going through an intermediate step to produce repulsive gravitation. Furthermore, these capabilities may be the prerequisites to devise future star ship propulsion drives to explore the cosmos.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.