Abstract

Replica microchips for capillary array electrophoresis containing 10 separation channels (50 microm width, 50 microm depth and 100 microm pitch) and a network of sacrificial channels (100 microm width and 50 microm depth) were successfully fabricated on a poly(methyl methacrylate) (PMMA) substrate by injection molding. The strategy involved development of moving mask deep X-ray lithography to fabricate an array of channels with inclined channel sidewalls. A slight inclination of channel sidewalls, which can not be fabricated by conventional deep X-ray lithography, is highly required to ensure the release of replicated polymer chips from a mold. Moreover, the sealing of molded PMMA multichannel chips with a PMMA cover film was achieved by a novel bonding technique involving adhesive printing and a network of sacrificial channels. An adhesive printing process enables us to precisely control the thickness of an adhesive layer, and a network of sacrificial channels makes it possible to remove air bubbles and an excess adhesive, which are crucial to achieving perfect sealing of replica PMMA chips with well-defined channel and injection structures. A CCD camera equipped with an image intensifier was used to simultaneously monitor electrophoretic separations in ten micro-channels with laser-induced fluorescence detection. High-speed and high-throughput separations of a 100 bp DNA ladder and phi X174 Hae III DNA restriction fragments have been demonstrated using a 10-channel PMMA chip. The current work establishes the feasibility of mass production of PMMA multichannel chips at a cost-effective basis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call